Образовательный портал - Kurokt

Бактерии нитрифицирующие. Значение нитрифицирующих бактерий. Выявление нитрифицирующих бактерий на плотных средах Предназначение и классификация

Круговорот углерода в мире микроорганизмов. Зависимость судьбы углерода от наличия кислорода в окружающей среде. Полное и неполные окисления. Автотрофы и гетеротрофы. Метаногены, метилотрофы

Взаимосвязь живых организмов на Земле особенно ярко выражена в круговороте углерода . Атмосферный воздух содержит около 0,03% С0 2 , но продуктивность зеленых растений настолько велика, что весь запас углекислоты в атмосфере был бы истрачен за 20 лет. Фотосинтез бы прекратился, если бы микроорганизмы, растения и животные не обеспечивали возвращение С0 2 в атмосферу в результате непрерывной минерализации органических веществ. Циклические превращения углерода и кислорода реализуются главным образом через два разнонаправленных процесса: кислородный фотосинтез и дыхание (либо горение в небиологических реакциях).

При кислородном фотосинтезе аэробные цианобактерии и зелёные растения основную часть окисленной формы углерода (СО 2) переводят в восстановленное состояние, характерное для органических соединений (например, глюкозу), а восстановленную форму кислорода (Н 2 О) окисляют до О 2 . Хотя анаэробные пурпурные и зелёные бактерии могут восстанавливать С0 2 до органических веществ, окисляя соединения: NH 3 , NO 2 , Н 2 , Fe 2+ , восстановленные соединения серы, вклад этих процессов в общую фиксацию СО 2 , незначителен. В результате фотосинтетической фиксации СО 2 образуются сахара и другие соединения. Основная масса фиксированного углерода растений откладывается в виде полимерных углеводов (крахмал, целлюлоза). Поэтому сахара играют ведущую роль в питании всех живых организмов, нуждающихся в органической пище (организмы-гетеротрофы), и служат предпочтительными питательными веществами для большинства гетеротрофных микроорганизмов.

В присутствии кислорода полное окисление органических веществ до СО 2 осуществляют многие аэробные (псевдомонады, бациллы) и факультативно анаэробные (актиномицеты) бактерии, грибы, а также животные. В качестве примеров неполного окисления можно привести окисление сахаров уксуснокислыми бактериями (Acetobacter, Gluconobacter) с образованием ацетата, образование лактата грибами порядка Mucorales (Rhizopus oryzae, R. nigricans и др.), образование глюконовой кислоты аспергиллами и пенициллами.

В анаэробных условиях органические соединения расщепляются путём брожения (дрожжи, молочнокислые бактерии, пропионовокислые бактерии, бактерии семейства Enterobacteriaceae), либо окисляются в процессе анаэробного дыхания при наличии акцепторов водорода. В роли акцепторов водорода выступают нитраты, сульфаты, карбонаты, фумараты, Fe 3+ : соответственно выделяют денитрифицирующие (виды родов Pseudomonas, Achromobacter, Bacillus и Micrococcus), сульфатредуцирующие (виды рода Desulfotomaculum , Desulfovibrio , Desulfobacter, De–sulfococcus, Desulfosarcina, Desulfonema) , метанобразующие бактериями. Метанобразующие бактерии (Methanobacterium, Melhanococcus, Methanosarcina) - строгие анаэробы, составляющие последнее звено анаэробной пищевой цепи. Выделяемый ими метан в аэробных условиях может окислятся до С02 метилотрофными бактериями (Methylomonas, Methytosinus, Melhylococcus).

Метилотрофы

Среди прокариотных и эукариотных микроорганизмов довольно широко распространена способность использовать для роста многие соединения, содержащие один атом углерода, более восстановленные, чем CO 2 (CO, метан (CH 4), метанол (CH 3 OH), формальдегид (HCOH), муравьиная кислота (HCOOH), метиламин (CH 3 NH 2), хлорметан (CH 3 Cl), цианистый калий (KCN)), а также соединения, содержащие больше одного углеродного атома, но не имеющие С-С-связей (ди- и триметиламины [(CH 3) 2 NH, (CH 3) 2 N], диметилсульфид [(CH 3) 2 S], метилформиат (CH 3 COOH) и др). В большинстве из них углерод представлен в виде метильной группы, поэтому микроорганизмы, использующие эти соединения, получили название метилотрофов.

Использовать C 1 -соединения могут многие аэробные и анаэробные прокариоты. Среди анаэробов такой способностью обладают, например, сульфатвосстанавливающие эубактерии, метанобразующие архебактерии, многие типичные хемо- и фототрофные эубактерии. К метилотрофам относят облигатно аэробные эубактерии, обладающие способностью использовать в качестве единственного источника углерода и энергии одноуглеродные соединения. Это различные грамположительные и грамотрицательные формы - представители Pseudomonas, Bacillus, Hyphomicrobium, Protaminobacter, Arthrobacter, Nocardia и др.

В отношении способа питания различают две основные группы метилотрофов: факультативные и облигатные. Факультативные метилотрофы наряду с одноуглеродными могут использовать и некоторые полиуглеродные соединения. Группа облигатных метилотрофов включает эубактерии, использующие только одноуглеродные соединения.

В IX издании Определителя бактерий Берги облигатные и факультативные метилотрофы выделены в семейство Methylococcaceae, включающее роды Methylococcus и Methylomonas. Основной признак - способность использовать метан в качестве единственного источника углерода и энергии в аэробных или микроаэробных условиях.

Метилотрофы, отнесенные к семейству Methylococcaceae, грамотрицательные эубактерии с разной морфологией и размерами клеток, подвижные или неподвижные. Некоторые штаммы образуют цисты. Характерной особенностью при росте на метане является наличие в клетке развитой системы внутрицитоплазматических мембран, которые могут быть разделены на два типа: внутрицитоплазматические мембраны I типа представлены стопками плотно упакованных везикулярных дисков, распределенных по всей цитоплазме; внутрицитоплазматические мембраны II типа имеют вид ламелл, расположенных по периферии клетки.

Помимо метана в качестве единственного источника углерода и энергии облигатные метилотрофы могут использовать метанол, формальдегид и другие C 1 -соединения, а факультативные - также C 2 -, C 4 -кислоты, этанол, глюкозу. Использование метилотрофами C 1 -соединений в конструктивном и энергетическом метаболизме привело к формированию у них специфических путей ассимиляции и диссимиляции этих соединений.

Процесс полного окисления метана может быть представлен в виде следующей схемы.

Первый этап - окисление метана до метанола катализируется метанмонооксигеназой в реакции:

CH 4 + O 2 + H 2 A = CH 3 OH + A + H 2 O.

где O 2 - молекулярный кислород, а H 2 A - восстановитель.

Описаны две формы метанмонооксигеназы: связанная с внутрицитоплазматическими мембранами и растворимая. Донором электронов для первой предположительно может быть восстановленный цитохром с или НАД-H 2 , образующийся в результате обратного электронного транспорта, для второй - только НАД(Ф)-H 2 или соединения, которые окисляются с его образованием. Остальные этапы окисления катализируются соответствующими дегидрогеназами, различающимися строением, природой акцепторов электронов и другими параметрами.

Окисление метана и связь энергетического и конструктивного метаболизма у метилотрофов: Ф 1 - метанмонооксигеназа; Ф 2 - метанолдегидрогеназа; Ф 3 - формальдегиддегидрогеназа; Ф 4 - формиатдегидрогеназа; ассимиляционные циклы: 1 - рибулозомонофосфатный, 2 - сериновый, 3 - восстановительный пентозофосфатный

Формальдегид у метилотрофов является ключевым метаболитом, на уровне которого расходятся конструктивные и энергетические пути. Часть формальдегида превращается в вещества клетки по специфическим для этих эубактерий ассимиляционным циклическим путям, большая часть окисляется до CO 2 в линейной последовательности реакций через формиат.

Дыхательные цепи метилотрофов по составу переносчиков и их локализации на мембране похожи на таковые большинства аэробных эубактерий, что предполагает возможность функционирования у них трех пунктов сопряжения. В окислительном метаболизме C 1 -соединений участвуют НАД, флавины, хиноны, цитохромы типа b, c, a, o .

Окисление метанола до формальдегида, катализируемое ферментом, содержащим в качестве простетической группы особый хинон, сопровождается передачей электронов в дыхательную цепь на уровне цитохрома c . Это приводит к синтезу одной молекулы АТФ, т. е. указывает на функционирование только третьего пункта сопряжения.

Окисление формальдегида и формиата, зависимое от НАД, позволяет предполагать, что перенос пары электронов может быть связан с тремя трансмембранными перемещениями протонов. Полученные экспериментальные данные указывают, однако, на меньшие выходы АТФ. Вопрос о том, на каком уровне передаются электроны от формальдегида и формиата в дыхательную цепь, не вполне ясен.

У метилотрофов функционируют циклические пути ассимиляции C 1 -соединений, ответственные за превращения их в вещества клетки: восстановительный пентозофосфатный, рибулозомонофосфатный и сериновый. В восстановительном пентозофосфатном цикле происходит ассимиляция CO 2 , образующейся при окислении C 1 -соединений. У метилотрофов этот путь не имеет широкого распространения и обнаружен только у представителей, способных расти автотрофно, а также у тех, кто может использовать формиат.

В рибулозомонофосфатном и сериновом циклах обеспечивается использование в биосинтетических процессах формальдегида, образуемого при окислении разных C 1 -соединений. Первая реакция рибулозомонофосфатного пути - акцептирование формальдегида молекулой рибулозо-5-фосфата, приводящее к образованию гексулозо-6-фосфата, который изомеризуется затем во фруктозо-6-фосфат. Ферменты, катализирующие обе реакции, специфичны для данного цикла. Далее возможны разные варианты. По одному из них фруктозо-6-фосфат подвергается фосфорилированию. Образовавшийся фруктозо-1,6-дифосфат расщепляется на две триозы: 3-фосфоглицериновый альдегид и фосфодиоксиацетон. 3-ФГА и фруктозо-6-фосфат участвуют в серии реакций, приводящих к регенерации акцептора формальдегида - рибулозо-5-фосфата. Эти реакции аналогичны таковым восстановительного пентозофосфатного цикла. Три оборота рибулозомонофосфатного цикла приводят к синтезу молекулы фосфодиоксиацетона, используемого в биосинтетических процессах.

Сериновый цикл существенно отличается от предыдущего пути ассимиляции формальдегида природой интермедиатов и ферментами. Ключевая реакция этого пути - конденсация формальдегида и глицина в присутствии тетрагидрофолиевой кислоты, приводящая к образованию серина. Последний в реакции трансаминирования превращается в оксипировиноградную кислоту, последовательное восстановление и фосфорилирование которой приводит к образованию 3-ФГК. Одна часть 3-ФГК используется для синтеза вещества клетки, другая превращается в фосфоенолпировиноградную кислоту. Последующее карбоксилирование ФЕП приводит к синтезу молекулы щавелевоуксусной кислоты. Эта реакция примечательна тем, что в сериновый цикл вовлекается CO 2 . Последующая серия реакций приводит к регенерированию глицина, и цикл замыкается.

Ассимиляция формальдегида через рибулозомонофосфатный цикл характерна для метилотрофов, имеющих мембранную организацию I типа, а через сериновый - для метилотрофов с системой внутрицитоплазматических мембран II типа.

ЦТК в системе катаболических путей не занимает ведущего места. У ряда облигатных метилотрофов он не "замкнут". Если даже содержит все ферменты, активность некоторых из них невысока.

Изучение этой специфической группы эубактерий привело к заключению о ее близости к автотрофам. Это проявляется как в способности метилотрофов синтезировать все вещества клетки из С 1 -соединений, так и функционированию развитого у них механизма ассимиляции CO 2 в восстановительном пентозофосфатном цикле.

Метилотрофы - обитатели водоемов и почв различного типа, где идут процессы с образованием одноуглеродных соединений. Их выделяют из сточных вод, с гниющих растительных остатков, из рубца жвачных животных. Интерес к изучению метилотрофов связан не только с особенностями их метаболизма, но и с перспективами их практического использования: метилотрофы характеризуются активным ростом, высокими выходами биомассы, большим содержанием полноценного белка в клетке; являются эффективными продуцентами различных веществ. В биосфере метан и другие С 1 -соединения поддерживаются на постоянном уровне главным образом за счет деятельности метилотрофов.

Метаногены.

Это морфологически разнообразная группа (кокки, палочки, сарцины, некоторые способны формировать нити или пакеты и др. Клетки неподвижные или передвигающиеся с помощью перитрихиально или полярно расположенных жгутиков), объединяемая 2-мя общ.признаками: облигатным анаэробиозом и способностью образовывать метан. В IX издании Определителя бактерий Берги группа разделена на 3 порядка: Methanobacteriales, Methanococcales, Мethanomicrobiales. У представителей рода Methanosarcina в клетках найдены газовые вакуоли. Для некоторых характерна развитая система внутриклеточных элементарных мембран, являющихся результатом разрастания и впячивания в цитоплазму ЦПМ и сохраняющих с ней связь. У этой группы архебактерий обнаружены клет.стенки 3-х типов: из псевдомуреина, из белковых глобул и гетерополисахаридной природы. Описан микоплазмоподобный метаноген, выделенный в род Methanoplasma, не имеющий кл.стенки.

Метаногены – строгие анаэробы. Рост нек.видов полностью подавляется при наличии молекулярного O 2 . Описаны виды с низкой чувствительностью к O 2 - в их клетках найдена супероксиддисмутаза.

Большинство имеет температурный оптимум для роста=30-40◦С, т.е. являются мезофилами. Но есть виды, у к-ых опт.зона сдвинута в сторону более низких темп.25◦С или высоких – 55-65◦С. Есть и термофилы: Methanothermus fervidus,растущий при 55-97◦С.

Все метаногены – нейтрофилы с оптимал. рН=6,5-7,5. Встречаются галлофилы (для роста нужен NaCl).

Универсал.источником С и Е для них является газовая смесь Н 2 и СО 2 . Следующими по распространению служат формиат, ацетат, метанол, метиламины и CO. В качестве ист. N используют аммонийный азот или нек.аминокислоты. Ист. S - сульфаты, сульфид и серосодержащие аминокислоты.

Коструктивный метаболизм . Е получают, осуществляя реакцию:

4Н 2 + СО 2 =2Н 2 О + СН 4

СО 2 не только единственный источник С, но и конеч.акцептор е при окислении водорода.

Фиксация СО 2 происходит по нециклическому ацетил-КоА-пути, где ключевым промежуточным соединением явл-ся ацетил-КоА, далее по схеме:

Биосинтез метана . Восстановление CO 2 до CH 4 требует переноса 8 электронов. Образующиеся на этом пути промежуточные продукты находятся не в свободном состоянии, а остаются связанными с переносчиками. Согласно предложенной модели на первом этапе CO 2 связывается с переносчиком углерода, образуя карбоксипроизводное (X 1 -COOH), которое восстанавливается до формилпроизводного (X 1 -CHO). Второй этап метаногенеза включает перенос формильной группы на другой переносчик (Х 2), который проводит C 1 -группу через две последовательные восстановительные реакции, приводящие к образованию метилпроизводного (X 2 -CH 3). На уровне образования метиленпроизводного (X 2 -CH 2) в процесс метаногенеза включается экзогенный формальдегид. Соединения, содержащие метильные группы (CH 3 OH, CH 3 COOH, CH 3 NH 2 и другие метиламины), подключаются на уровне метилпроизводного. В этой же точке происходит разветвление анаболических и катаболических путей. На третьем конечном этапе метаногенеза, наиболее изученном, метильные группы с переносчика поступают на кофермент М (КоМ-SH). Образуется метил-КоМ. Далее следует его восстановление, сопровождающееся распадом комплекса и выделением CH 4 . Обе реакции катализируются метилредуктазной системой, представляющей сложный мультиферментный комплекс, в состав которого помимо фермента входят кофермент М, фактор F 430 . Для активности системы необходимы АТФ, ионы Mg 2+ и еще не идентифицированные кофакторы.

Место обитания : анаэробная зона разных водоемов, богатых орг.веществами, в иловых отложениях рек и озер, в болотах, заболоченных почвах, в осадочных слоях морей и океанов. Также обитатели пищевар.тракта животных и человека, важный компонент микрофлоры рубца жвачных животных. Метаногены обеспечивают протекание в природе анаэробного разложения орг.соединений, в 1 очередь – целлюлозы. Метаногены также представляют практический интерес как продуценты витамина В 12 и газообразного топлива – метана.

Превращение различных форм азота микроорганизмами. Аммонификация белков. Ассимиляционная и диссимиляционная нитратредукция. Аммонификация нитрата. Азотфиксация. Нитрификация.

Нитрифицирующие бактерии

Получают энергию в результате окисления восстановленных соединений азота (аммиака; азотистой кислоты). Впервые чистые культуры этих бактерий получил С. Н. Виноградский в 1892 г., установивший их хемолитоавтотрофную природу. В IX издании Определителя бактерий Берги все нитрифицирующие бактерии выделены в семейство Nitrobacteraceae и разделены на две группы в зависимости от того, какую фазу процесса они осуществляют. Первую фазу - окисление солей аммония до солей азотистой кислоты (нитритов) - осуществляют аммонийокисляющие бактерии (роды Nitrosomonas, Nitrosococcus, Nitrosolobus и др.):

NH 4 + + 1,5O 2 = NO 2 – + H 2 O + 2H + .

Вторую фазу - окисление нитритов до нитратов - осуществляют нитритокисляющие бактерии, относящиеся к родам Nitrobacter, Nitrococcus и др.:

NO 2 – + 1/2O 2 = NO 3 – .

Группа нитрифицирующих бактерий представлена грамотрицательными организмами, различающимися формой и размером клеток, способами размножения, типом жгутикования подвижных форм, особенностями клеточной структуры, молярным содержанием ГЦ-оснований ДНК, способами существования.

Все нитрифицирующие бактерии - облигатные аэробы; некоторые виды - микроаэрофилы. Большинство - облигатные автотрофы, рост которых ингибируется органическими соединениями в концентрациях, обычных для гетеротрофов. Основным источником углерода остается CO 2 , ассимиляция которого осуществляется в восстановительном пентозофосфатном цикле. Только для некоторых штаммов Nitrobacter показана способность к медленному росту в среде с органическими соединениями в качестве источника углерода и энергии.

Процесс нитрификации локализован на ЦПМ и внутрицитоплазматических мембранах. Ему предшествует поглощение NH 4 + и перенос его через ЦПМ с помощью Сu-содержащей транслоказы. При окислении аммиака до нитрита атом азота теряет 6 электронов. Предполагается, что на первом этапе аммиак окисляется до гидроксиламина с помощью монооксигеназы, катализирующей присоединение к молекуле аммиака 1 атома O 2 ; второй взаимодействует, вероятно, с НАДH 2 , что приводит к образованию H 2 O:

NH 3 + O 2 + НАДH 2 = NH 2 OH + H 2 O + НАД + .

NH 2 OH + O 2 = NO 2 – + H 2 O + H + .

Электроны от NH 2 OH поступают в дыхательную цепь на уровне цитохрома c и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембрану, приводящим к созданию протонного градиента и синтезу АТФ. Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом.

Вторая фаза нитрификации сопровождается потерей 2 электронов. Окисление нитрита до нитрата, катализируемое молибденсодержащим ферментом нитритоксидазой, локализовано на внутренней стороне ЦПМ и происходит следующим образом:

NO 2 – + H 2 O = NO 3 – + 2H + + 2е – .

Электроны поступают на цитохром a 1 и через цитохром c на терминальную оксидазу aa 3 где акцептируются молекулярным кислородом. При этом происходит перенос через мембрану 2H + . Поток электронов от NO 2 – на O 2 происходит с участием очень короткого отрезка дыхательной цепи

Многие хемоорганогетеротрофные бактерии, принадлежащие к родам Arthrobacter, Flavobacterium, Xanthomonas, Pseudomonas и др., способны окислять аммиак, гидроксиламин и другие восстановленные соединения азота до нитритов или нитратов. Процесс нитрификации этих организмов, однако, не приводит к получению ими энергии. Изучение природы этого процесса, получившего название гетеротрофной нитрификации, показало, что, возможно, он связан с разрушением образуемой бактериальными культурами перекиси водорода с помощью пероксидазы. Образующийся при этом активный кислород окисляет NH 3 до NO 2 – .

Нитрифицирующие бактерии обнаружены в водоемах разного типа и в почвах, где они, как правило, развиваются совместно с бактериями, жизнедеятельность которых приводит к образованию исходного субстрата нитрификации - аммиака.

Процесс нитрификации, являясь важным звеном в круговороте азота в природе, имеет как положительные, так и отрицательные стороны. Переведение азота из аммонийной формы в нитратную способствует обеднению почвы азотом, поскольку нитраты легко вымываются из почвы. В то же время нитраты - хорошо используемый растениями источник азота. Связанное с нитрификацией подкисление почвы улучшает растворимость и, следовательно, доступность некоторых жизненно необходимых элементов, в первую очередь фосфора и железа.

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Muntz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемо-автотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4 + ->NO2 -), и бактерий второй фазы нитрификации," переводящих азотистую кислоту в азотную (N02 - ->NO3 -). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.

Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euro-раеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. еurораеа обычно овальные (0,6-1,0)< 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.

У Nitrosocystis oceanus клетки округлые, диаметром 1,8-2,2 мкм, но бывают и крупнее (до 10 мкм). Способны к движению благодаря наличию одного жгутика или пучка жгутиков. Образуют зооглеи и цисты.

Размеры Nitrosolobus multiformis составляют 1,0-1,5 X 1,0-2,5 мкм. Форма этих бактерий не совсем правильная, так как клетки разделены на отсеки, дольки (-lobus, отсюда и название Nitrosolobus), которые образуются в результате разрастания внутрь цитоплазматической мембраны.

У Nitrosospira briensis клетки палочковидные и извитые (0,8 -1,0 X 1,5-2,5 мкм), имеют от одного до шести жгутиков.

Среди бактерий второй фазы нитрификации различают три рода: Nitrobacter, Nitrospina и Nitrococcus.

Большая часть исследований проведена с разными штаммами Nitrobacter, многие из которых могут быть отнесены к Nitrobacter wino-gradskyi, хотя описаны и другие виды. Бактерии имеют преимущественно грушевидную форму клеток. Как показано Г. А. Заварзиным, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как снабжена одним латерально расположенным жгутиком. Отмечают также сходство Nitrobacter с почкующимися бактериями рода Hyphomicrobium по составу жирных кислот, входящих в липиды.

Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактеррга неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.


По строению клеток исследованные нитрифицирующие бактерии похожи на другие грамотрицательные микроорганизмы. У некоторых видов обнаружены развитые системы внутренних мембран, которые образуют стопку в центре клетки (Nitrosocystis oceanus), или располагаются по периферии параллельно цитоплазматической мембране (Nitrosomonas еигораеа), или образуют чашеподобную структуру из нескольких слоев (Nitrobacter winogradskyi). Видимо, с этими образованиями связаны ферменты, участвующие в окислении нитрификаторами специфических субстратов.

Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.

Показано также, что Nitrobacter и Nitrosomonas еигораеа восстанавливают нитриты с образованием аммония.

Такой микроорганизм, как Nitrosocystis oceanus, выделенный из Атлантического океана, относится к облигатным галофилам и растет на среде, содержащей морскую воду. Область значений рН, при которой наблюдается рост разных видов и штаммов нитрифицирующих бактерий, приходится на 6,0-8,6, а оптимальное значение рН чаще всего 7,0-7,5. Среди Nitrosomonas еигораеа известны штаммы, имеющие температурный оптимум при 26 или около 40 °С, и штаммы, довольно быстро растущие при 4°С.

Все известные нитрифицирующие бактерии являются облигатными аэробами. Кислород необходим им как для окисления аммония в азотистую кислоту:

NH4 + +3/2O2 ->N02 - + H20+2H + , дельта F = - 27,6.104d;w:,

так и для окисления азотистой кислоты в азотную:

NO2 - +1/2О2 - NO3 - , дельта F = -7,6*104дж.

Но весь процесс превращения аммония в нитраты происходит в несколько этапов с образованием соединений, где азот имеет разную степень окисленности.

Первым продуктом окисления аммония является гидроксиламин, который, возможно, образуется в результате непосредственного включения в NH4 + молекулярного кислорода:

NH4 + +1/2 O2 -> NH2OH+H + , дельта F = + 15,9*103дж.

Однако окончательно механизм окисления аммония до гидроксиламина не выяснен. Превращение гидроксиламина в нитрит:

NH2OH+O2 -> N02 - + H20+H + , дельта F = - 28,9 104 Дж

как предполагают, идет через образование гипонитрита NOH, а также окись азота (N0). Что касается закиси азота (N20), обнаруживаемой при окислении Nitrosomonas europaea аммония и гидроксиламина, то большинство исследователей считает ее побочным продуктом, образующимся в основном в результате восстановления нитрита.

Исследование окисления Nitrobacter нитрита с использованием в опытах тяжелого изотопа кислорода (18 0) показало, что образующиеся нитраты содержат значительно больше 18 0, когда меченой является вода, а не молекулярный кислород. Поэтому предполагают, что сначала происходит образование комплекса N02~H2O, который далее окисляется до N0s~. При этом происходит передача электронов через промежуточные акцепторы на кислород. Весь процесс нитрификации можно представить в виде следующей схемы (рис. 137), отдельные этапы которой требуют, однако, уточнения.

Рис. 131. Структурные формулы некоторых каротиноидов фототрофных бактерий.

Кроме первой реакции, а именно образования из аммония гидроксиламина, последующие стадии обеспечивают организмы энергией в виде аденозинтрифосфата (АТФ). Синтез АТФ сопряжен с функционированием окислительно-восстановительных систем, передающих электроны на кислород, подобно тому как это имеет место у гетеротрофных аэробных организмов. Но поскольку окисляемые нитрификаторами субстраты имеют высокие окислительно-восстановительные потенциалы, они не могут взаимодействовать с никотинамидадениндинуклеотида-ми (НАД или НАДФ, E = -0,320 В), как это бывает при окислении большинства органических соединений. Так, передача электронов в дыхательную цепь от гидроксиламина, видимо, происходит на уровне флавина:

NH2OH -> флавопротеид -> цит. b (убихинон?) ->-> цит. с -> цит. а -> - 02

Когда окисляется нитрит, то включение его электронов в цепь, вероятно, идет на уровне либо цитохрома типа с, либо цитохрома типа а. В связи с этой особенностью большое значение у нитрифицирующих бактерий имеет так называемый обратный, или обращенный, транспорт электронов, идущий с затратой энергии части АТФ или трансмембранного потенциала, образуемых при передаче электронов на кислород (рис. 138).

Рис. 132. Схема переноса электронов при фотосинтезе у растений: П, и П2 - пигменты фотоактивных центров; Z, и Z2 - первичные акцепторы электрона; Фд - ферредоксин; НАДФ - никотинамидадениндинуклеотидфосфат; АТФ - аденозинтрифосфат.

Таким образом происходит обеспечение хемо-автотрофных нитрифицирующих бактерий не только АТФ, но и НАДН, необходимых для усвоения углекислоты и для других конструктивных процессов.

Согласно расчетам эффективность использования свободной энергии Nitrobacter может составлять 6,0-50,0%, a Nitrosomonas - и больше.

Ассимиляция углекислоты происходит в основном в результате функционирования пенто-зофосфатного восстановительного цикла углерода, иначе называемого циклом Кальвина (см. рис. 134). Итог его выражают следующим уравнением:

6С02+18АТФ+12НАДН+12Н + -> -> 6[СН20] + 18АДФ+18Фн+12НАД+6Н20,

где [СН2О] означает образующиеся органические вещества, имеющие уровень восстановлен-ности углеродов. Однако в действительности в результате ассимиляции углекислоты через цикл Кальвина и другие реакции, прежде всего путем карбоксилирования фосфоенолпирувата, образуются не только углеводы, но и все другие компоненты клеток - белки, нуклеиновые кислоты, липиды и т. д. Показано также, что Nitrococcus mobilis и Nitrobacter winogradskyi могут образовывать в качестве запасных продуктов поли-бета-оксибутират и гликогеноподобный полисахарид. Такое же соединение обнаружено в клетках Nitrosolobus multiformis. Кроме углеродсодержащих запасных веществ, нитрифицирующие бактерии способны накапливать полифосфаты, входящие в состав мета-хроматиновых гранул.

Еще в первых работах с нитрификатором Ви-ноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitro-bacter в присутствии нитрита дрожжевого авто-лизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Показано также включение в белки и другие компоненты клеток Nitrobacter 14 C из пирувата, альфа-кетоглутарата, глутамата и аспартата. Известно, кроме того, что Nitrobacter медленно, по окисляет формиат. Включение 14 С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocystis oceanus. Есть данные об использовании 14 С-ацетата Nitrosolobus multiformis.

Недавно установлено также, что некоторые штаммы Nitrobacter растут на среде с ацетатом и дрожжевым автолизатом не только в присутствии, но и в отсутствие нитрита, хотя и медленно. При наличии нитрита окисление ацетата подавляется, но включение его углерода в разные аминокислоты, белок и другие компоненты клеток увеличивается. Имеются, наконец, данные, что возможен рост Nitrosomonas и Nitrobacter на среде с глюкозой в диализируе-мых условиях, которые обеспечивают удаление продуктов ее метаболизма, оказывающих инги-биторное действие на данные микроорганизмы. На основании этого делается вывод о способности нитрифицирующих бактерий переключаться на гетеротрофный образ жизни. Однако для окончательных выводов необходимо большее число экспериментов. Важно прежде всего выяснить, как долго нитрифицирующие бактерии могут расти в гетеротрофных условиях при отсутствии специфических окисляемых субстратов.

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вторых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.

Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarmm и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromoba-cter, Pseudomonas, Arthrobacter, Nocardia.

Показано, что Arthrobacter sp. окисляет в присутствии органических субстратов аммоний с образованием гидроксиламина и далее нитритов и нитратов. Кроме того, может образовываться гидроксамовая кислота. У ряда бактерий выявлена способность осуществлять нитрификацию органических азотсодержащих соединений: амидов, аминов, оксимов, гидро-ксаматов, нитросоединений и др. Пути их превращения представляют следующим образом:

Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с хи-миотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.

Живые организмы по типу питания подразделяются на автотрофы и гетеротрофы. Последние самостоятельно строят новые элементы из углекислоты и других неорганических веществ. Нитрифицирующие бактерии являются известной формой жизни, часто использующейся в быту и хозяйстве. Эти виды входят в состав очищающих устройств для аквариумов.

Нитрифицирующие бактерии используются для очистки аквариума

Основная характеристика

Источники энергии, поддерживающие условия жизни организмов, определяют их деление на фотоавтотрофы и хемоавтотрофы, которые зависят от солнечной энергии и минеральных компонентов. В зависимости от окислителя хемоавтотрофа, выделяют водородные и нитрифицирующие бактерии, серо- и железобактерии.

Предназначение и классификация

В начале XIX века ученые доказали, что нитрификация относится к биологии. Для этого к сточным водам они добавляли хлороформ.

Среди автотрофов, производящих сложную органику из простых неорганических молекул, известны организмы, применяющие энергию. Это водоросли, бактерии, вырабатывающие органические вещества из углекислого газа и воды. Присутствие автотрофов обусловлено наличием кислорода и невысокой влажностью.


Нитрифицирующие бактерии имеют большое значение в сельском хозяйстве

Организмы, принимающие энергию от окисления и восстановления (хемоавтотрофы), выявлены среди бактерий. По физиологическим, биологическим и химическим свойствам и значению эти микроскопические организмы представляют интерес для отдельных сфер сельского хозяйства.

Во время исследования завершался процесс окисления аммиака. Виноградский разделил нитрификаторы на бактерии, исполняющие первый этап этого процесса (окисление аммония до азотистой кислоты), и второй - переход этой кислоты в азотную. Грамотрицательные бактерии относятся к нитробактериям.

Представители первой фазы Nitro:

  • Somonas (Сомонас);
  • Socystis (Сосайстис);
  • Solobus (Солобус);
  • Sospira (Соспира).

Больше изучен вид Сомонас, хотя создание настоящих культур представляется сложным. Клетки овальной формы, размножаются образованием дочерних прокариотов из материнской клетки. В результате развития микроорганизмов в жидкой среде имеются подвижные формы с несколькими жгутиками и недвижимой зооглеей.

Нитрососайстис характеризуются круглой формой, размером до 2 мкм. Некоторые представители достигают 10 мкм. Передвигаются благодаря одному жгутику, образуют зооглеи и цисты. Нитросолобус равен 1−1,5*1−2,5 мкм. Клетки делятся на части, и поэтому внешняя форма неправильная.

Клетки Nitrosospira палочковидные или извивающиеся, размером 0,9−1*1,5−2,60 мкм, имеют до 5 жгутиков.


Бактерии имеют размер 0,9−1*1,5−2,60 мкм

Бактерии второй фазы Nitro:

  • Bacter (Бактер);
  • Spina (Спина);
  • Coccus (Кокус).

Пагубное влияние органических веществ на хемоавтотрофные организмы отмечено и в исследованиях ученых. Они не применяют экзогенные органические элементы и называются облигатными автотрофами. Применять отдельные соединения бактерии могут с ограниченными возможностями.

Улучшается рост Нитробактер при наличии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в слабой концентрации вносятся в среду.

Основное строение нитрификаторов:

  • Сформированная система мембран в виде стопки в центре клетки, посередине.
  • Чашеподобная структура, состоящая из нескольких листиков.

Клетки Nitrobacter по виду напоминают грушу. Размножаются путем почкования. Информация о бактериях Нитроспина и Нитрококус ограничена.

По строению клеток изученные бактерии аналогичны другим грамотрицательным микроорганизмам. У некоторых есть сформированные системы внутренних мембран, создающих стопку в середине клетки (Нитрососайстис), размещаются параллельно мембране цитоплазме (Нитросомонас) или формируют чашеподобную структуру из слоев (Нитробактер Виноградский). Кислород важен для окисления аммония в азотную кислоту:


По строению клеток изученные бактерии аналогичны другим грамотрицательным микроорганизмам

Нитробактер и Нитросомонас воссоздают нитриты с аммонием. Наряду с нитрифицирующими хемотрофами существуют гетеротрофы, имеющие похожие процессы. К ним относятся грибы из рода Фусамм и бактерии Алкалигенес, Соринебактериум, Ахромоба-ктер, Псеудомонас, Арфробактер. Нокардиа окисляет аммоний с созданием гидроксиламина, нитритов и нитратов. В итоге образуется гидроксамовая кислота.

Азот является важным элементом, входящим в состав нуклеиновой кислоты и белка. Величины гетеротрофной нитрификации огромные. Создаются продукты с токсичным, ядовитым, канцерогенным, мутагенным действием и с химиотерапевтическим эффектом. По этой причине изучению процесса и выяснению его значения для гетеротрофных культур уделено большое внимание.

Образование химических соединений для создания энергии является хемосинтезом, благодаря которому растут и развиваются клетки. Хемоавтотрофные типы распространены в природе и наблюдаются в почве и водоемах. Производимые ими процессы совершаются в огромных масштабах и имеют важнейший смысл в круговороте азота.

Ученые прошлого века считали, что производительность нитрификаторов обогащает почву, поскольку они трансформируют аммоний в нитраты, которые легко всасываются растениями, а также увеличивают усвоение минералов. Растения, усваивая аммонийный азот и ионы аммония, лучше хранятся в почве, чем нитраты. Образовавшиеся нитраты подкисляют среду обитания, обедняют состав почвы по количеству азота.

Питание микроорганизмов

Бактерии нитрификаторы являются автотрофами, так как не используют экзогенные органические вещества. Основа с дрожжевым аутолизатом, серином и глутаматом в низкой концентрации влияет на рост бактерий. Это происходит из-за нитрита, находящегося в питательной среде. Окисление ацетата сокращается, но возрастает добавление его углерода в белок, аминокислоты и прочие компоненты.

В результате проведенных исследований получена информация о том, что бактерии переходят на гетеротрофное питание.

Среда обитания и опасность

Нитрифицирующие бактерии распространены в окружающей среде. Они присутствуют в грунте, разных субстратах и водоемах. Процесс их функционирования вносит существенный вклад в общий этап движения азота в природе.

Нитрификаторы обитают в простой минеральной среде, содержащей окисляемый субстрат в виде аммония, нитритов и углекислоты.


Нитрифицирующие бактерии довольно распространены в окружающей среде

В окружающем мире микроорганизмы обрабатывают неорганические вещества и создают условия для питания растений в грунте. Источником энергии для животных является флора. Человек питается растениями и животными. Остатки жизнедеятельности флоры и фауны служит пищей для бактерий. Круговорот замыкается.

Такой микроорганизм, как Нитрососайстис, выделен из вод Атлантики. Он относится к облигатным галлофилам и обитает в соленой среде. Уровень pH (реакция водорода) для роста бактерий равен 8,7, а оптимальное значение составляет 7,5.

Среди вида Сомонас распространены типы, имеющие температурный режим при 26 или около 40 °C, и штаммы, быстрорастущие при 4 °C. Благоприятным климатом является среда обитания (вода) 24−27 градусов. Должен быть устойчивый доступ кислорода и наличие водной растительности.

Простейшие бактерии относят к облигатным аэробам. Для окисления аммония в азотистую кислоту, а азотистой кислоты в азотную им необходим кислород. Место обитания не должно содержать органических соединений. В исследованиях подтверждено губительное действие глюкозы, гербицидов, мочевины, пептона, глицерина и другой органики на бактерии.


Простейшие бактерии относят к облигатным аэробам, тк им нужен кислород для переработки аммония

Некоторые штаммы нитробактерий при наличии органического составляющего окисляют аммоний, создавая гидроксиламин, нитриты и нитраты. Вследствие таких реакций появляются гидроксамовые кислоты. Бактерии выполняют процесс нитрификации разных соединений, в состав которых входит азот.

Объемы гетеротрофной нитрификации при особых обстоятельствах могут быть губительными. Опасность состоит в том, что образуются токсины, мутагены и канцерогены.

Применение в различных сферах

Использование в различных областях нитрифицирующих бактерий вносит свои достоинства и недостатки. Микроорганизмы создают благоприятные условия для обитания рыб в аквариуме, обогащения почвы, а также сельскохозяйственных процессов.

Биологический фильтр для аквариума

Нитробактерии играют важную роль в превращении токсического аммиака в нитраты. Это важно при запуске нового аквариума. Эти микроорганизмы составляют небольшую долю бактерий и являются биофильтром. Они размножаются на любой поверхности (наполнитель фильтра, грунт или растения). Если водорослей в аквариуме находится большое количество, тогда аквариум полностью считается биофильтром. Важно создать благоприятную обстановку для размножения полезных бактерий.


Нитробактерии превращают токсический аммиак в нитраты

Сократить популяцию бактерий в аквариуме могут дефицит кислорода, избыток углекислоты, снижение pH и использование дезинфекторов. Нитрифицирующие бактерии растений лишают питания водорослей. Живые бактерии для аквариума применяются во время подготовки резервуара к использованию.

Важность микроорганизмов велика , ведь они очищают воду от загрязнений, биологических и органических остатков, отложений и испражнений. Поэтому микрофлора в резервуарах, где они обитают, идеальная.

Нитрифицирующие бактерии - главные очистители обитаемых помещений с рыбками и моллюсками. Они активно размножаются в среде, насыщенной аммонием, нитритами, азотом и аммиаком.

Для запуска аквариума используются препараты марки «Сера», содержащие в составе живые нитрификаторы и вулканическую пыль - безупречную среду для скорейшего размножения и роста. Этот субстрат оседает на дно и становится частью грунта. В аквариум заселяются сразу несколько бактерий.

Большая часть продукции, поставляемой в специализированные зоомагазины, содержит культуры гетеротрофных бактерий.

Значение для сельского хозяйства

С целью повышения урожайности аграрии применяют всевозможные удобрения, содержащие нитрифицирующие бактерии.

Почва является идеальным субстратом для процессов роста, размножения растений и живых организмов, поэтому важно поддерживать ее правильное содержание и комплексный состав.

Биологическую обработку грунта проводят природные чистильщики - нитрифицирующие бактерии. Для них не обязателен доступ веществ из внешней среды - они могут вырабатывать их автономно. Например, автотрофным зеленым растениям нужен солнечный свет, а для нитробактерий безразличен.

Присутствуя в почве, перегное или водной среде, они превращают выделяемый аммиак в нитраты (соль азотной кислоты). Каждый этап проводится с помощью разных бактерий.


Биологическую обработку грунта проводят природные чистильщики - нитрифицирующие бактерии.

Процесс перехода аммиака в нитраты:

  • Окисление аммиака до нитрита. Этот процесс происходит не одним типом бактерий, а разными. Одни виды микроорганизмов превращают в нитрит, а другие - в нитрат. Важным условием должна быть температура от 4 градусов, влажность и обилие кислорода.
  • Окисление нитрита в нитрат.

Нитрификаторы положительно влияют на почву, повышая ее плодородность за счет расщепления аммония. Однако учеными выявлено также негативное влияние. Бактерии подкисляют почву, что не является благоприятным моментом, а также насыщают почву ионами аммония. Впоследствии почва истощается по количеству полезных веществ.

Энергетическим источником для хемотрофов являются разнообразные минеральные вещества. Экосистема создается искусственно, но для удачного развития запускают установленные процессы, регулировкой которых занимаются жители резервуара, например, аквариума.

Несмотря на крошечные размеры, эти живые организмы влияют на окружающий мир. Нитробактерии распространены в почвах, морской и пресной воде, играют важную роль в переработке сточных вод.

). Впервые чистые культуры этих бактерий получил С.Н.Виноградский в 1892 г., установивший их хемолитоавтотрофную природу. В IX издании Определителя бактерий Берги все нитрифицирующие бактерии выделены в семейство Nitrobacteraceae и разделены на две группы в зависимости от того, какую фазу процесса они осуществляют. Первую фазу - окисление солей аммония до солей азотистой кислоты (нитритов) - осуществляют аммонийокисляющие бактерии (роды Nitrosomonas , Nitrosococcus , Nitrosolobus и др.):

NH4+ + 1,5O2 переходит в NO2- + Н2О + 2Н+

NO2- + 1/2*O2 переходит в NO3-

Группа нитрифицирующих бактерий представлена грамотрицательными организмами, различающимися формой и размером клеток, способами размножения, типом жгутикования подвижных форм, особенностями клеточной структуры, молярным содержанием ГЦ-оснований ДНК, способами существования.

Все нитрифицирующие бактерии - облигатные аэробы; некоторые виды - микроаэрофилы. Большинство - облигатные автотрофы , рост которых ингибируется органическими соединениями в концентрациях, обычных для гетеротрофов . С использованием 14С-соединений показано, что облигатные хемолитоавтотрофы могут включать в состав клеток некоторые органические вещества, но в весьма ограниченной степени. Основным источником углерода остается СО2, ассимиляция которой осуществляется в восстановительном пентозофосфатном цикле . Только для некоторых штаммов Nitrobacter показана способность к медленному росту в среде с органическими соединениями в качестве источника углерода и энергии.

Процесс нитрификации локализован на цитоплазматической и внутрицитоплазматических мембранах. Ему предшествует поглощение NH4+ и перенос его через ЦПМ с помощью медьсодержащей транслоказы. При окислении аммиака до нитрита атом азота теряет 6 электронов. Предполагается, что на первом этапе аммиак окисляется до гидроксиламина с помощью монооксигеназы, катализирующей присоединение к молекуле аммиака 1 атома О2; второй взаимодействует, вероятно, с НАД*Н2 , что приводит к образованию Н2О:

NH3 + О2 + НАД*Н2 переходит в NH2OH + Н2О + НАД+

NH2OH + О2 переходит в NO2- + Н2О + Н+

Электроны от NH2OH поступают в дыхательную цепь на уровне цитохрома с и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембрану, приводящим к созданию протонного градиента и синтезу АТФ . Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом.

Вторая фаза нитрификации сопровождается потерей 2 электронов. Окисление нитрита до нитрата, катализируемое молибденсодержащим ферментом нитритоксидазой, локализовано на внутренней стороне ЦПМ и происходит следующим образом:

NO2- + Н2О переходит в NO3- + 2Н+ 2е

Электроны поступают на цитохром а1 и через цитохром с на терминальную оксидазу аа3, где акцептируются молекулярным кислородом ( рис. 98 , Б). При этом происходит перенос через мембрану 2Н+. Поток электронов от NO2- на О2 происходит с участием очень короткого отрезка дыхательной цепи. Так как Ео пары NO2/NO3- равен +420 мВ, восстановитель образуется в процессе энергозависимого обратного переноса электронов. Большая нагрузка на конечный участок дыхательной цепи объясняет высокое содержание цитохромов с и а у нитрифицирующих бактерий.

Многие хемоорганогетеротрофные бактерии, принадлежащие к родам Arthrobacter , Flavobacterium , Xanthomonas , Pseudomonas и др., способны окислять аммиак , гидроксиламин и другие восстановленные соединения азота до нитритов или нитратов . Процесс нитрификации этих организмов, однако, не приводит к получению ими энергии. Изучение природы этого процесса, получившего название гетеротрофной нитрификации, показало, что, возможно, он связан с разрушением образуемой бактериальными культурами

С. Н. Виноградский установил, что существуют две группы нитрификаторов: одна осуществляет окисление аммиака до азотистой кислоты (NH+4 > NO-2) -- первая фаза нитрификации, другая -- окисление азотистой кислоты до азотной (NO-2 > NO-3) -- вторая фаза нитрификации.

Представителей обеих групп относят к семейству Nitrobacteriaceae. Это одноклеточные грамотрицательные бактерии. Среди нитрифицирующих бактерий есть палочковидные клетки, эллиптические, сферические, извитые и дольчатые, плеоморфные. Размеры клеток колеблются от 0,3 до 1 мкм в ширину и от 1 до 3 мкм в длину. Существуют подвижные и неподвижные формы с полярным, субполярным и перитрихальным жгутикованием. Размножаются бактерии-нитрификаторы в основном делением, зa исключением Nitrobacter, для которого характерно почкование. Почти у всех нитрификаторов хорошо развита система внутрицитоплазматических мембран, значительно различающихся по форме и расположению в клетках отдельных видов. Мембраны цитоплазмы подобны мембранам фотосинтезирующих пурпурных бактерий.

Бактерии первой фазы нитрификации представлены родами: Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus и Nitrosovibrio.

Наиболее детально к настоящему времени изучен Nitrosomonas europaea (рис. 1, А). Он представляет собой короткие овальные палочки размером 0,8--1 х 1--2 мкм. В жидкой культуре клетки Nitrosomonas проходят ряд стадий развития. Две основные из них представлены подвижной формой и неподвижными зооглеями. Подвижная форма обладает субполярным жгутиком или пучком жгутиков.

Описаны представители и других родов бактерий, вызывающих первую фазу нитрификации. Вторую фазу нитрификации осуществляют представители родов Nitrobacter, Nitrospira и Nitrococcus. Наибольшее число исследований проведено с Nitrobacter winogradskyi (рис. 1, Б), однако описаны и другие виды (например, Nitrobacter agilis). Клетки нитробактepa имеют удлиненную, клиновидную или грушевидную форму, более узкий конец часто загнут в клювик, размеры клеток --0,6--0,8 х 1--2 мкм. При почковании дочерняя клетка обычно подвижна, так как имеет один полярный жгутик. Известно чередование в цикле развития подвижной и неподвижной стадий.

Рис. 1. Нитрифицирующие бактерии: А - Nitrosomonas europaea; Б - Nitrobacter winogradskyi.

Описаны и другие виды бактерий, вызывающие вторую фазу нитрификации.

Нитрифицирующие бактерии культивируют на простых минеральных средах, содержащих аммиак или нитриты (окисляемые субстраты) и диоксид углерода (основной источник углерода). Источником азота для этих организмов служат аммиак, гидроксиламин и нитриты.

Нитрифицирующие бактерии развиваются при рН 6,0--8,6, оптимум реакции среды составляет рН 7,5--8,0. При значениях ниже рН 6 и выше рН 9,2 бактерии не развиваются. Оптимальная температура для развития нитрификаторов 25--30 °С. Изучение отношения различных штаммов Nitrosomonas europaea к температуре показало, что некоторые из них имеют оптимум развития при 26 °С или около 40 °С, другие способны довольно быстро расти при 4 °С.

Нитрификаторы -- облигатные аэробы. Используя кислород воздуха, они окисляют аммиак до азотистой кислоты (первая фаза нитрификации):

NH+4 + 3/2О2 > NO2- + Н2О + 2H+

а затем азотистую кислоту до азотной (вторая фаза нитрификации):

NO2 - + 1/2О2 > NO3 -

Следовательно, аммиак -- продукт жизнедеятельности аммонифицирующих бактерий -- использует для получения энергии Nitrosomonas, а нитриты, образующиеся в процессе жизнедеятельности последних, служат источником энергии для Nitrobacter.

Согласно современным представлениям, процесс нитрификации осуществляется на цитоплазматической и внутрицитоплазматических мембранах и проходит в несколько этапов. Первым продуктом окисления аммиака становится гидроксиламин, затем превращающийся в нитроксил (NOH) или пероксонитрит (ONOOH), последний, в свою очередь, преобразуется в дальнейшем в нитрит,а нитрит в нитрат. Весь процесс нитрификации иллюстрирует следующая схема:

Нитроксил, как и гидроксиламин, по-видимому, может димеризоваться в гипонитрит или превращаться в закись азота N2O --побочный продукт нитрификации. Кроме первой реакции (образования гидроксиламина из аммония), все последующие превращения сопровождаются синтезом макроэргических связей в виде АТФ.

Нитрификаторы осуществляют фиксацию СО2 через восстановительный пентозофосфатный цикл (цикл Кальвина). В результате последующих реакций образуются не только углеводы, но и другие важные для бактерий соединения -- белки, нуклеиновые кислоты, жиры и т. д.

Долгое время нитрифицирующих бактерий относили к облигатным хемолитоавтотрофам. Позднее были получены данные о способности этих бактерий использовать некоторые органические вещества. Так, отмечено стимулирующее действие на рост Nitrobacter нитрита, дрожжевого автолизата, пиридоксина, глутаминовой кислоты и серина. Предполагают, что некоторые нитрифицирующие бактерии обладают способностью переключаться с автотрофного на гетеротрофное питание. Однако нитрификаторы не растут на обычных питательных средах, так как большое количество легкоусвояемых органических веществ, содержащихся в таких средах, задерживает их развитие. Однако в природе такие бактерии хорошо развиваются в черноземах, навозе, компостах, т. е. в местах, где содержится много органического вещества.

Указанное противоречие оказывается несущественным, если сравнивать количество легкоокисляемого углерода в почве с теми концентрациями органического вещества, которые нитрификаторы должны выдерживать в культурах. Так, органическое вещество почв представлено главным образом гуминовыми веществами, на которые приходится в черноземе 71--91% общего углерода, а легко усвояемые водорастворимые органические вещества составляют не более 0,1% общего углерода. Следовательно, нитрификаторы не встречают в почве больших количеств легкоусвояемого органического вещества.

Накопление нитратов происходит с неодинаковой интенсивностью на разных почвах. Чем богаче почва, тем больше соединений азотной кислоты она может накапливать. Существует метод определения доступного растениям азота в почве по показаниям ее нитрификационной способности. Следовательно, интенсивность нитрификации можно использовать для характеристики агрономических свойств почвы.

Вместе с тем при нитрификации происходит лишь перевод одного питательного для растений вещества -- аммиака в другую форму -- азотную кислоту. Нитраты, однако, обладают некоторыми нежелательными свойствами. В то время как ион аммония поглощается почвой, соли азотной кислоты легко вымываются из нее. Кроме того, нитраты восстанавливаются в результате денитрификациидо N 2 , что также обедняет азотный запас почвы. Все перечисленное существенно снижает коэффициент использования нитратов растениями.

В растительном организме соли азотной кислоты перед включением в синтез должны быть восстановлены, на что тратится энергия. Аммоний же используется непосредственно. В связи с этим ученые поставили вопрос о возможности искусственного снижения интенсивности нитрификации при помощи специфических ингибиторов, подавляющих активность бактерий-нитрификаторов и безвредных для других организмов. Уже предложены многочисленные промышленные препараты ингибиторов нитрификации (2-хлор-6-(трихлорметил)-пиридин, нитропирин и др.), синтезированные на пиридиновой основе. Ингибиторы нитрификации подавляют только первую фазу нитрификации и не действуют на вторую, а также на гетеротрофную нитрификацию. При применении ингибиторов нитрификации (нитропирин) эффективность азотных удобрений повышается с 50 до 80%.

Гетеротрофная нитрификация

Гетеротрофная нитрификация. Способны осуществлять нитрификацию и некоторые гетеротрофные микроорганизмы. К ним относятся бактерии из родов Pseudomonas, Arthrobacter, Corynebacteriит, Nocardia и отдельные виды грибов из родов Fusarium, Aspergillus, Penicillium, Cladosporium. Установлено, что Arthrobacter sp. в присутствии органических субстратов вызывает окисление аммиака с образованием гидроксиламина, а затем нитрита и нитрата. Некоторые бактерии вызывают нитрификацию таких азотсодержащих органических веществ, как амиды, амины, гидроксамовые кислоты, нитросоединения (алифатические и ароматические), оксимы и др. Однако считают, что гетеротрофная нитрификация не служит источником энергии для перечисленных организмов.

Гетеротрофная нитрификация встречается в естественных условиях (почвах, водоемах и других субстратах). Она может приобретать главенствующее значение, особенно в атипичных условиях (например, при высоком содержании органических С- и N-соединений в щелочной почве и т. п.). Гетеротрофные микроорганизмы не только способствуют окислению азота в таких условиях, но и вызывают образование и накопление токсичных веществ, соединений канцерогенного и мутагенного, а также химиотерапевтического действия.

В связи с тем что некоторые из перечисленных соединений вредны для человека и животных даже в относительно низких концентрациях, тщательно изучают возможность их образования в природе.