Образовательный портал - Kurokt

Год создания закона расщепления менделя. Сущность законов наследования признаков у человека. Закономерности наследования. Такое явление называют кодоминированием

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек

Мы обращали внимание на то, что наследственность и наследование - два разных явления, которые не все строго различают.

Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур.

Наследование - процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.

Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда «закон расщепления » и «закон независимого комбинирования признаков-генов » трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.

Во времена Менделя считали, что при скрещивании родительские признаки наследуются в потомстве слитно («слитная наследственность») или мозаично - одни признаки наследуются от матери, другие от отца («смешанная наследственность»). В основе таких представлений лежало убеждение, что в потомстве наследственность родителей смешивается, сливается, растворяется. Такое представление было ошибочным. Оно не давало возможности научно аргументировать теорию естественного отбора, и на самом деле, если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то естественный отбор работал бы вхолостую. Чтобы освободить свою теорию естественного отбора от подобных затруднений, Дарвин выдвинул теорию наследственного определения признака отдельными единицами - теорию пангенеза. Однако она не дала правильного решения вопроса.

Успех Менделя обусловлен открытием метода генетического анализа отдельных пар наследственных признаков; Мендель разработал метод дискретного анализа наследования признаков и по существу создал научные основы генетики, открыв следующие явления:

  1. каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам: «один ген - один признак», «один ген - один фермент»;
  2. гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;
  3. оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;
  4. редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;
  5. наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

Таким образом, Мендель, открыв метод генетического анализа наследования отдельных пар признаков (а не совокупности признаков) и установив законы наследования, впервые постулировал и экспериментально доказал принцип дискретной (генной) детерминации наследственных признаков.

На основании изложенного нам представляется полезным различать законы, непосредственно сформулированные Менделем и относящиеся к процессу наследования, и принципы наследственности, вытекающие из работы Менделя.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.

Второй закон - закон относительного постоянства наследственной единицы - гена.

Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.

Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов - ген и тем самым создало возможности объединения естественных наук - биологии, физики, химии и математики с целью Анализа биологических процессов.

В дальнейшем при определении наследственной единицы мы будем употреблять только термин «ген». Понятия «наследственный фактор» и «наследственный задаток» громоздки, и, кроме того, вероятно, наступило время, когда наследственный фактор и ген следует различать и вложить в каждое из этих понятий свое содержание. Под понятием «ген» мы пока будем иметь в виду далее неделимую функционально целостную единицу наследственности, определяющую наследственный признак. Термин «наследственный фактор» следует толковать в более широком смысле как комплекс ряда генов и цитоплазматических влияний на наследственный признак.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллельные, доминантные и рецессивные гены. Генотип

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b .

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В ).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b ).

Генотип — совокупность всех генов данного организма.

Скрещивание

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква F k (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота ) или рецессивные (аа, рецессивная гомозигота ).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота , содержащая два разных аллеля одного гена (Аа ).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет . Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

гомозиготный организм образует только один тип гамет:

гетерозиготный по одной паре генов организм образует два типа гамет (из двух гомологичных хромосом зиготы в процессе мейоза одна хромосома — с геном А — попадает в одну гамету, другая — с геном а — в другую гамету):

Гибридизация — процесс скрещивания двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (отдаленная гибридизация).

Гибрид — организм, полученный путем скрещивания генетически разных организмов.

Моногибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами только одного признака (одной парой аллелей).

Анализирующее скрещивание — скрещивание изучаемого организма с организмом, имеющим рецессивный гомозиготный генотип (и образующим только один тип гамет с рецессивными аллелями). Позволяет установить генотип изучаемого организма. Применяется в селекции растений и животных.

Дигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей).

Полигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами трех и более признаков.

Сцепленное наследование — совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.

Расщепление признаков — проявляющееся среди потомства второго и последующих поколений определенное соотношение между количествами особей, характеризующихся альтернативными признаками исходных родительских форм.

■ Конкретные количественные соотношения между числами особей, несущими признаки каждой из родительских форм, определяются тем, каковы родительские организмы по данным признакам — гомозиготные или гетерозиготные.

Первый закон Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования ) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Следствие: если первое поколение единообразно по одному из альтернативных признаков родительских особей, то данный признак является доминантным , а родительские особи гомозиготны по альтернативным признакам.

Второй закон Менделя

Второй закон Менделя (закон расщепления) описывает моно-гибридное скрещивание гетерозиготных особей: при скрещивании между собой гибридов первого поколения (т.е. гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Расщепление по фенотипу: три части потомков второго поколения с доминантным признаком и одна часть — с рецессивным .

Расщепление по генотипу: одна часть потомков — доминантные гомозиготы (АА) , две части потомков — гетерозиготы (Аа) и одна часть — рецессивные гомозиготы (аа) .

Следствия второго закона Менделя:

■ если потомство родительских особей дает расщепление по фенотипу, близкое к 3: 1, то исходные родительские особи по данным аллелям гетерозиготны ;

анализирующее скрещивание: если потомство родительских особей дает расщепление по фенотипу, близкое к 1: 1, то одна из родительских особей была гетерозиготной, а другая — гомозиготной и несла пару рецессивных аллелей.

Третий закон Менделя

Третий закон Менделя (закон независимого наследования признаков ) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя ).

❖ Определение возможных генотипов и вероятностей их появления у особей второго поколения: сначала определяется генотип первого поколения и тип его гамет Gf1 (см. таблицу),

после чего генотипы особей и вероятности их появления определяются с помощью решетки Пеннета .

Решетка Пеннета — таблица, с помощью которой изображают и анализируют расщепление независимо наследуемых признаков. По горизонтали в верхней строке этой решетки записываются женские гаметы, по вертикали в левом столбце — мужские гаметы, на пересечениях строк и столбцов — генотипы дочерних особей.

Пример: скрещивание гомозиготной особи гороха, характеризующейся двумя доминантными признаками — желтой окраской и гладкой формой семян, — с гомозиготной особью гороха, имеющей два альтернативных рецессивных признака — зеленую окраску и морщинистую форму семян.

Так как, согласно третьему закону Менделя, расщепление по каждому признаку идет независимо: по цвету (во втором поколении) в соотношении 3: 1 (см. второй закон Менделя), по форме — также в соотношении 3: 1, то расщепление по фенотипу, т.е. по комбинации признаков, наблюдается в соотношении (3: 1) 2 = 9: 3: 3: 1 (девять частей из 16 составляют желтые гладкие семена, три части — желтые морщинистые, еще три части — зеленые гладкие и одну часть — зеленые морщинистые семена).

Из данных решетки Пеннета следует, что всего при дигибридном скрещивании гомозиготных особей (в частности, гороха) у особей второго поколения возможны девять различных генотипов (генотипических классов) , которые распадаются на четыре фенотипических класса. Потомки, доминантные по двум признакам (желтые гладкие семена гороха) имеют один из следующих генотипов (в скобках указана вероятность появления данного генотипа): ААВВ (1/16), ААВв (2/16), АаВВ (2/16) или АаВв (4/16); доминантные по первому и рецессивные по второму признаку (желтые морщинистые семена) — ААвв (1/16) или Аавв (2/16); рецессивные по первому и доминантные по второму признаку (зеленые гладкие семена) — ааВВ (1/16) или ааВв (2/16); рецессивные по обоим признакам — генотип аавв (1/16) (зеленые морщинистые семена).

❖ Расщепление по генотипу имеет вид:
■ при дигибридном скрещивании: (1:2:1) 2 ;
■ при полигибридном скрещивании (1:2:1) n , где n — число расщепляющихся пар аллелей.

❖ Расщепление по фенотипу имеет вид:
■ при дигибридном скрещивании: (3: 1) 2 = 9: 3: 1;
■ при полигибридном скрещивании (3: 1) n .

Следствия третьего закона Менделя:

■ если анализ расщепления по двум признакам дает по фенотипу соотношение, близкое к 9: 3: 3: 1, то исходные родительские особи дигетерозиготны по этим признакам;

■ в общем случае каждый новый ген увеличивает число типов различных гамет в два раза, а число генотипов — в три раза. Следовательно, особь, гетерозиготная по п парам генов, может произвести 2” типов гамет и 3” различных генотипов;

■ число различающихся классов фенотипов равно числу различных типов гамет при наличии доминирования и числу различных генотипов в отсутствие доминирования.

Замечания:

■ третий закон Менделя, т.е. независимое комбинирование признаков, выполняется только при условии, что аллельные гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом;

■ он не объясняет закономерности наследования генов, находящихся совместно в одной и той же хромосоме;

❖ Вычисление частоты определенного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов:

■ сначала вычисляется вероятность появления соответствующего генотипа отдельно для каждой пары генов;

■ искомая частота равна произведению этих вероятностей. Пример: вычислить частоту генотипа АаЬЬСс в потомстве от скрещивания АаВbсс x АаВbСс. Вероятность появления генотипа Аа в потомстве от скрещивания Аа x Аа равна 1/2; вероятность появления генотипа bb в потомстве от скрещивания Вb х Вb равна 1/4; вероятность появления генотипа Сс в потомстве от скрещивания Сс x сс равна 1/2. Следовательно, вероятность появления генотипа АаbbСс составляет (1/2) х (1/4) х (1/2) = 1/16.

Условия выполнения и значение законов Менделя

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия , при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

В 19 веке австрийский ботаник и биолог Грегор Иоганн Мендель проводил исследования посевного гороха. Он смог установить, как передаются признаки по наследству. Это исследование выявило три закономерности, которые получили название «Законы Менделя».

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.

    Закон единообразия

    Закон расщепления

    Закон независимого наследования признаков

    Заключение

Закон единообразия

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями - разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результат

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Закон расщепления

Порядок проведения эксперимента

Для следующего этапа исследования использовался только горох первого поколения. Менгель высадил его и оставил без вмешательства, чтобы горох мог самостоятельно опылиться. Это позволило появиться растениям второго поколения «F2».

Результат

Из-за самостоятельного опыления появились семена желтого и зелёного цвета. А поскольку жёлтый цвет является доминантным признаком, то соотношение семян желтого цвета к зеленому составило 3 к 1.

Разделение, а точнее расщепление родительского типа на два различных, дало название второму закону.

Данный опыт помог установить, что признак одного из родителей (зеленый цвет) не исчез полностью, а просто неактивен или подавлен. За него отвечал тот же ген, что и за желтый цвет, за который отвечала часть гена - доминантный аллель. Желтый цвет в себе содержала рецессивная аллель - «а», подавляемая доминантной «А».

Поэтому строение растений:

    зеленый горох-родитель - две рецессивных аллели «аа»;

    желтый горох-родитель - две доминантных аллели «АА»;

    желтый горох первого поколения - одна доминантная и одна рецессивная аллели «Аа»;

    желтый горох второго поколения - он может содержать следующие аллели: «АА», «Аа», «аА». В них цвет обуславливается наличием доминанта;

    зеленый горох второго поколения - две рецессивных аллели «аа».

Третий закон независимого наследования признаков

Порядок проведения эксперимента

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй - зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

    желтый цвет и гладкие семена;

    желтый цвет и ребристые семена;

    зеленый цвет и гладкие семена;

    зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

Таким образом строение растений:

    зеленый горох-родитель с ребристыми семенами - «аа» и «bb»;

    желтый горох-родитель с гладкими семенами - «АА» и «BB»;

    желтый горох первого поколения с гладкими семенами - «Аа» и «Bb»;

    желтый горох второго поколения с гладкими семенами - «АА», «Аа», «аА» в сочетании с «BB», «Bb», «bB».

    желтый горох второго поколения с ребристыми семенами - «АА», «Аа», «аА» и «bb»

    зеленый горох второго поколения с гладкими семенами - «аа» в сочетании с «BB», «Bb», «bB»;

    зеленый горох второго поколения с ребристыми семенами «аа» и «bb».

Таким образом соотношение цветов и гладкости: 9-3-3-1.

Заключение

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»