Образовательный портал - Kurokt

Презентация на тему "Импульс. Закон сохранения импульса". Презентация "Импульс тела. Закон сохранения импульса" Конспект с презентацией масса импульс

Слайд 2

Основополагающий вопрос:

Как экспериментально можно проверить закон сохранения импульса?

Слайд 3

Проблемные вопросы:

Как изменяется импульс тела при взаимодействии? Где применяется закон сохранения импульса? Каково значение работ Циолковского для космонавтики?

Слайд 4

Цели и задачи проекта:

определить понятия: «упругий и неупругий удары»; на практическом и виртуальном примере рассмотреть, как выполняется закон сохранения импульса.

Слайд 5

Рене Декарт (1596-1650), французский философ, математик, физик и физиолог. Высказал закон сохранения количества движения, определил понятие импульса силы.

Слайд 6

Закон сохранения импульса

Импульсом тела (количеством движения) называют меру механического движения, равную в классической теории произведению массы тела на его скорость. Импульс тела является векторной величиной, направленной так же, как и его скорость. Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках.

Слайд 7

Упругий удар

Абсолютно упругий удар – столкновения тел, в результате которого их внутренние энергии остаются неизменными. При абсолютно упругом ударе сохраняется не только импульс, но и механическая энергия системы тел. Примеры: столкновение бильярдных шаров, атомных ядер и элементарных частиц. На рисунке показан абсолютно упругий центральный удар: В результате центрального упругогоудара двух шаров одинаковой массы, они обмениваются скоростями: первый шар останавливается, второй приходит в движение со скоростью, равной скорости первого шара.

Слайд 8

Демонстрационный эксперимент

Упругий удар

Слайд 9

Неупругий удар

Абсолютно неупругий удар: так называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно целое. При неупругом ударе часть механической энергии взаимодействующих тел переходит во внутреннюю, импульс системы тел сохраняется. Примеры неупругого взаимодействия: столкновение слипающихся пластилиновых шаров, автосцепка вагонов и т.д. На рисунке показан абсолютно неупругий удар: После неупругого соударения два шара движутся как одно целое со скоростью, меньшей скорости первого шара до соударения.

Слайд 10

Демонстрационный эксперимент

Неупругий удар

Слайд 11

Практическая проверка закона сохранения импульса

  • Слайд 12

    Вычисления:

    А В С В результате поставленного эксперимента мы получили: mпистолета = 0,154 кг mснаряда = 0,04 кг АС= Lпистолета = 0,1 м Lснаряда = 1,2 м С помощью метромера мы определили время движения снаряда и пистолета, оно составило: tпистолета = 0,6 с tснаряда = 1,4 с Теперь определим скорость снаряда и пистолета во время выстрела по формуле: V= L/t Получили, что Vпистолета = 0,1:0,6 = 0,16 м/с Vснаряда = 1,2:1,4 = 0,86 м/с И наконец мы можем вычислить импульс двух этих тел по формуле: P=mV Получили: Рпистолета = 0,154 * 0,16 = 0,025 кг*м/с Рснаряда = 0,04 *0,86 = 0,034 кг*м/с mп*Vп = mс*Vс 0,025 = 0,034разногласие получилось в связи с действием силы трения на снаряд и погрешностью приборов. 0,1 м 1,2 м снаряд пистолет

    Слайд 13

    Виртуальная проверка закона сохранения импульса

  • Слайд 14

    Примеры применения закона сохранения импульса

    Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике - при забивании свай, ковке металлов и т.д.

    Слайд 15

    Закон сохранения импульса лежит в основе реактивного движения.

    Большая заслуга в развитии теории реактивного движения принадлежит Константину Эдуардовичу Циолковскому. Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов. Идеи Циолковского успешно осуществлены в СССР при постройке искусственных спутников Земли и космических кораблей.

    Слайд 16

    Реактивное движение

    Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным. Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противоположную сторону.

    Слайд 17

    Выводы:

    При взаимодействии изменение импульса тела равно импульсу действующей на это тело силы При взаимодействии тел друг с другом изменение суммы их импульсов равно нулю. А если изменение некоторой величины равно нулю, то это означает, что эта величина сохраняется. Практическая и экспериментальная проверка закона прошла успешно и в очередной раз было установлено, что векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется.

    Посмотреть все слайды

    Cлайд 1

    УРОК ФИЗИКИ В 10 КЛАССЕ Импульс тела. Закон сохранения Учитель Кононов Геннадий Григорьевич СОШ № 29 Славянский район Краснодарского края

    Cлайд 2

    СИЛА И СКОРОСТЬ Задача механики – описание движения тел, решается с помощью II з. Ньютона. Существуют случаи, когда силу невозможно измерить, например, столкновения тел. Тогда удобнее рассчитывать изменение скорости тел, т.к. сила вызывает изменение скорости. Движение тел до удара и после удара будем считать равномерными.

    Cлайд 3

    СИЛА И ИМПУЛЬС Запишем второй закон Ньютона F = ma p = mv –импульс тела после взаимодействия p0 = mv0 – импульс тела до взаимодействия Ft = p - p0

    Cлайд 4

    ИМПУЛЬС ТЕЛА – произведение массы тела на его скорость. Импульс – векторная величина, направление импульса совпадает с направлением скорости. Единица измерения импульса кг·м/с Если тело покоится, то импульс равен нулю

    Cлайд 5

    ЗАДАЧА Шарик массой 100г, летящий со скоростью 20м/с, упруго ударяется о стенку и отскакивает от нее с такой же скоростью. Найти изменение импульса шарика Решение p1 mv Δp = p2 – p1 = mv – (- mv) = -mv p2 = 2mv Δp = 2·0,1·20 = 4кг·м/с

    Cлайд 6

    ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА Сумма импульсов тел до взаимодействия равна сумме импульсов тел после взаимодействия m1v1 + m2v2 = m1u1 + m2u2 В задачах рассматривается система из двух тел, внешние силы отсутствуют (замкнутая система)

    Cлайд 7

    УПРУГИЙ УДАР 1. При упругом столкновении двух тел оба тела приобретают новые скорости 2.

    Cлайд 8

    НЕУПРУГИЙ УДАР При неупругом ударе тела соединяются и после удара движутся вместе. Уравнение закона сохранения импульса имеет вид m1v1 ± m2v2 = (m1 + m2)u (если тела движутся навстречу друг другу, то ставится «-», если одно тело догоняет другое, то ставится «+»)

    Cлайд 9

    РЕАКТИВНОЕ ДВИЖЕНИЕ – движение тела при отделении от него некоторой массы 0 = m1v1 - m2v2 или m1v1 = m2v2 Например: а) выстрел из ружья б) полет ракеты? Зачем нужно прижимать приклад ружья к плечу в момент выстрела?

    Cлайд 10

    ЗАДАЧА Летящая пуля массой 10г ударяется в брусок массой 390г и застревает в нем. Найти скорость бруска, если скорость пули 200м/с.

    Cлайд 11

    Дано: СИ Решение m1 = 10г 0,01кг ЗСИ для неупругого удара m2 = 390г 0,39кг m1v1 ± m2v2 = (m1 + m2)u v1 = 200м/с m1v1 = (m1 + m2)u v2 = 0 u - ? ЗАДАЧА

    Cлайд 12

    САМОСТОЯТЕЛЬНАЯ РАБОТА 1. На листке написать фамилию и имя 2. Указать номер варианта (1 или 2) 3. Тестовые задания с выбором ответа 4. Слайды чередуются автоматически через 1,5 минуты 5. Работаем самостоятельно 6. Желаю удачи

    Cлайд 13

    Т ЕС Т Импульсом тела называют величину равную А)произведению массы тела на силу; Б)отношению массы тела к его скорости В)произведению массы тела на его скорость. Г) произведение массы на ускорение Импульс тела всегда направлен А) перпендикулярно скорости Б) сонаправлен скорости В) противоположен скорости Г) совпадает с ускорением 2.Если на тело не действует сила, то импульс тела А) не изменяется Б) увеличивается В) уменьшается Г) равен нулю 2.Если на тело действует сила, то импульс тела: А) не изменяется Б) только увеличивается В) только уменьшается Г)может и увеличиваться и уменьшаться

    Cлайд 14

    Т ЕС Т 3.Когда ступеньракетыотделяется от космического корабля, она получает некоторый импульсp0.Какой импульсpполучает при этом космический корабль? А) р = р0Б) р < р0 В) р > р0Г) р = 0 3. При выстреле из ружья пуля получаетимпульср1, а ружьё за счет отдачи приобретает импульср2. Сравните импульсы обоих тел А) р1> р2Б) р1< р2 В) р1= р2Г) р1= р2= 0 4. Мяч массойmброшен вверх с начальной скоростьюv.Каковоизменениеимпульса мяча за время движения от начала до возвращения в исходную точку? А)mvБ)- mvВ)2mvГ)0 4.Дваавтомобиля с одинаковой массойmдвижутся со скоростямиvи2vотносительно Земли. Чему равен модуль импульса второго автомобиля относительно первого? А)3mvБ)2mvВ)mvГ)0

    Cлайд 15

    Тележка массой 0,1 кг движется равномерно по столу со скоростью 5 м/с, так как изображено на рисунке. Чему равен её импульс и как направлен вектор импульса? 1) 0,5 кг·м/с, вправо 2) 0,5 кг·м/с, влево 3) 5,0 кг·м/с, вправо 4) 50 кг·м/с, влево 5) 50 кг·м/с, вправо Автомобиль массой 1 тонна, движется прямолинейно со скоростью 20 м/с. Импульс автомобиля равен… 1) 0,5·103 кг·м/с 2) 1·104 кг·м/с 3) 2·104 кг·м/с 4) 20 кг·м/с 5) 50 кг·м/с Вопрос №5 1 вариант 2 вариант

    «Импульс тела» - Обозначим «сухую» массу ракета. Согласно закону сохранения импульса, получим: Направление вектора импульса тела совпадает с направлением скорости тела. А массу вырывающихся газов. Рассмотрим реактивное движение с помощью закона сохранения импульса. 4. Урок №1. 1.

    «Механическое движение тел» - Ответ. Находилось тело). Кинематика периодического движения. Виды механического движения. Кинематика. Когда? Равномерное движение по окружности. Механическое движение. Периодическое движение. Вопрос №1. Периодическое движение – движение, повторяющееся через равные промежутки времени.

    «Равномерное и неравномерное движение» - t 1. Неравномерное движение. t 2. L2. t 3. Чистоозерное. Равномерное движение. L3. L 1. =. Яблоневка.

    «Неинерциальные системы отсчета» - Где - расстояние от тела до оси вращения; - широта местности. Лифт движется вертикально вверх с ускорением: R на разных широтах разное: OY: 2. Лифт движется с ускорением, направленным вертикально вниз: Неинерциальные системы отсчета. Движение тел относительно поверхности Земли: - Второй закон Ньютона.

    «Движение это жизнь» - Движение – жизнь! Задачи исследования: Вопрос 2: двигались ли пассажиры относительно друг друга? Диаграмма, представляющая результаты опроса. «Движение – жизнь» - данное высказывание относится к разделу науки: «Жизнь требует движения» Аристотель. Криволинейное. Выяснить, что такое движение. Выводы.

    «Движение тел по плоскости» - Решить в общем виде полученную систему уравнений относительно неизвестных. А = …………………………………….=1,13 ! Выполнить анализ взаимодействия тел. Кратко написать условие задачи. Fтр. Решение задач уровень «В». Коэффициент сопротивления равен 0,1. Физика Подготовка к ЕГЭ. m? = F + N. Равномерное движение тела по наклонной плоскости с трением.