Образовательный портал - Kurokt

Реферат по математике на тему "аттрактор лоренца". «Моделирование аттрактора Лоренца Лоренц э детерминированное непериодическое движение

Подробности Опубликовано: 10.07.2018 11:13 : Windows.
Лицензия: бесплатно.
Версия: 1.1.0.0.
Аннотация : демонстрируется программа для анализа системы Лоренца, позволяющая наблюдать такие состояния системы, как устойчивый аттрактор, два неустойчивых аттрактора, фокус, гомоклиническая петля с устойчивым и неустойчивыми фокусами, аттрактор Лоренца, предельный цикл и удвоенный предельный цикл.
Скачать: ZIP (архив программы) .
Ключевые слова: аттрактор Лоренца, система Лоренца, исследование системы дифференциальных уравнений Лоренца, аттрактор Лоренца matlab, исследование системы Лоренца, аттрактор Лоренца c++, эффект бабочки, гомоклиническая петля, фазовый портрет Лоренца, фазовый портрет системы Лоренца, фазовое пространство Лоренца, решение системы лоренца, странный аттрактор Лоренца, бабочка Лоренца, гомоклиническая траектория, гомоклиническая структура, хаотическое решение, Эдвард Лоренц.

Система Лоренца представляет собой трехмерную систему нелинейных автономных дифференциальных уравнений. Динамическая система была исследована Эдвардом Лоренцем в 1963 году. Основной причиной, породившей такой интерес к системе уравнений Лоренца, является ее хаотическое поведение. Система уравнений записывается в виде

где q, r, b > 0. В результате интегрирования системы были выявлены закономерности, приведенные ниже.

При r>0 и r0 и r1

В случае r1,345 – фокусами (рис.4).

Рис. 3. Два узла, r=1,3

Рис. 4. Два фокуса, r=10

При увеличении r до величины 13,926 две неустойчивые траектории, исходящие из начала координат, возвращаются в начало координат при t стремящемся к бесконечности, при этом перестают быть глобальными аттракторами.

В случае r=13,927 точка может совершать колебательные движения из одной окрестности в другую и обратно. Такое поведение называют метастабильным хаосом или гомоклинической петлей (рис.5).

Рис. 5. Гомоклиническая петля, r=13,927

При r>13,927 в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором. Происходит бифуркация гомоклинических траекторий с образованием двух неустойчивых циклов (рис.6).

Рис. 6. Два неустойчивых цикла, r>13,927

При значении r=24,06 траектории ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца (рис.7).

Рис. 7. Аттрактор Лоренца, r=24,06

В случае r>24,06 происходит очередная бифуркация. Однако обе устойчивые точки сохраняются вплоть до значений r=24,74.

При r=24,74 возникает инверсия бифуркации Хопфа, когда r>24,74 остается «странный аттрактор» (рис.8).

Рис. 8. Странный аттрактор Лоренца, r>24,74

В случае увеличения r до 100 наблюдается автоколебательный режим (рис.9).

Рис. 9. Автоколебательный режим, r=100

При увеличении r до значения 225 происходит каскад бифуркаций удвоения цикла (рис.10).

Рис. 10. Удвоение цикла, r=225

Рис. 11. Два несимметричных периодических решения, r=300

При больших значениях r в системе существует симметричный цикл (рис.12).


Рис. 12. Симметричный цикл, r=400

Программа «Lorenz - программа для изучения системы Лоренца», реализованная в среде разработки Turbo C++, позволяет смоделировать систему Лоренца. Построение фазовых портретов и графика зависимости решений от времени t ведется на основе метода Рунге-Кутта третьего порядка. Интерфейс программы приведен на рис.13.


Рис. 13.

Моделирование поведения системы Лоренца с использованием программы Lorenz предполагает выполнение следующих шагов (рис.14):

  • определить начальные координаты (x0,y0,z0);
  • задать шаг интегрирования h и число итераций i;
  • установить значение коэффициентов q, r, b;
  • (опционально) установить индикатор «Подробно» для получения деталей решения;
  • нажать кнопку «Вычислить»;
  • (опционально) дважды щелкнуть на полученных изображениях для их копирования в буфер обмена.


Рис. 14.

Примеры моделирования поведения системы Лоренца программой Lorenz приведены на рис.15.


Рис. 15.

Литература
  • Архангельский А.Я. Программирование в C++ Builder. – М.: Бином-Пресс, 2010. – 1304 с.
  • Кирьянов Д. Mathcad 15/Mathcad Prime 1.0. – СПб.: БХВ-Петербург, 2012. – 432 с.
  • Арнольд В.И. Обыкновенные дифференциальные уравнения. – М.: МЦНМО, 2012. – 344 с.
  • Список программ
  • MassTextReplacer - программа для массового изменения текстовых файлов ;
  • Lorenz - программа для изучения системы Лоренца;
  • ЛОРЕНЦА СИСТЕМА

    ЛОРЕНЦА СИСТЕМА

    Система трёх нелинейных дифференц. ур-ний первого порядка:

    решения к-рой в широкой области параметров являются нерегулярными ф-циями времени и по мн. своим характеристикам неотличимы от случайных. Л. с. была получена Э. Лоренцем (Е. Lorenz) из ур-ний гидродинамики как модель для описания тепловой конвекции в горизонтальном слое жидкости, подогреваемой снизу ( Р r - Прандтля число, - приведённое Р э -лея число, b - определяется выбором в Фурье-разложении поля скорости и темп-ры).


    Рис. 1. Иллюстрация последовательных бифуркаций в системе Лоренца при увеличении параметра r : а) ; б) ; в) г) д) е)

    Л. с.- один из примеров динамической системы, имеющей простой физ. смысл; она демонстрирует стохастич. поведение системы. В фазовом пространстве этой системы в области параметров, указанных на рис. 1, существует странный аттрактор, движение изображающей точки на к-ром соответствует "случайному" - турбулентному течению жидкости при тепловой конвекции.

    Рис. 2. Конвективная петля - физическая модель, для которой выводятся уравнения Лоренца.

    Л. с. (при b =l) описывает, в частности, движение жидкости в конвективной петле, расположенной в вертикальной плоскости в однородном тяжести тороидальной полости, заполненной жидкостью (рис. 2). На стенках полости поддерживается не зависящая от времени (но зависящая от угла ) темп-pa Т(); ниж. часть петли теплее верхней. Ур-ния движения жидкости в конвективной петле сводятся к Л. с., где x(t] - скорость движения жидкости, у (t) - темп-pa в точке N , a z(t) - темп-pa в точке М при больших t. С ростом г характер движения жидкости меняется: сначала (при г0 в полупpостpанство x 24 - траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца.

    Рисунок 5 – Модель системы при r < 24

    Вывод

    Модель Лоренца является реальным физическим примером динамических систем с хаотическим поведением. Исследуя поведение системы при различных значениях набора параметров, можно убедиться в том, что существуют переходы между состояниями системы (графиками системы).

    Наиболее интересно для меня является колебательная фаза, находясь в которой система колеблется между двумя статичными точками, но не достигает их.

    Литература

    1. Методические указания к выполнению лабораторных работ по дисциплине «Системный анализ» / ; Самарск. гос. арх.-строит. ун-т./ Самара, 20с.

    Изв. вузов «ПНД», т. 15, № 1, 2007 УДК 517.9

    АТТРАКТОР ЛОРЕНЦА В СДВИГОВЫХ ТЕЧЕНИЯХ

    А.М. Мухамедов

    В рамках ранее предложенной модели хаотической динамики сплошной среды получена реализация трехмерного режима пульсаций скорости течения, отвечающего аттрактору типа Лоренца. Решение представляет собой набор структур, определяющих геометрию редуцированного к трехмерному случаю расслоенного многообразия, образованного пульсациями скоростей течения среды. Сама динамика аттрактора Лоренца проявляется в виде временной зависимости пульсаций скоростей вдоль линий тока среднего течения.

    Как известно, один из классических примеров детерминированного хаоса -аттрактор Лоренца - открытый в результате гидродинамических исследований прикладного характера, все еще не получил адекватного воспроизведения в формализме существующей турбулентной механики. В работах автора была высказана гипотеза о том, что классическое гидродинамическое решение этой задачи не может быть получено в принципе, и предложено обоснование такого вывода. В его основе лежало понимание того, что аттракторные модели хаотической динамики затрагивают мезоскопический уровень движения сплошной среды, и что в классических уравнениях Навье - Стокса этот уровень не представлен. Отсюда следовало предложение расширить варианты решения проблемы аттрактора Лоренца за счет явного включения в математический формализм гидродинамики дополнительных мезоструктур, выводящих аппарат этой теории за рамки классических операций с уравнениями Навье - Стокса.

    В настоящее время аттракторные режимы динамики сплошных сред конструируются в рамках моделей, представляющих собой далеко уходящие абстракции движения сплошной среды, почти не использующие представления о механических взаимодействиях частиц среды друг с другом . В одних случаях эти абстракции отображают свойства операторов эволюционного типа, действующих в иерархии вложенных друг в друга гильбертовых пространств. В других случаях они отображают динамику конечномерных систем, воспроизводящих изменения состояний среды, но при этом каждое из состояний актуально представлено всего лишь точкой соответствующего фазового многообразия. Подобное моделирование не отвечает прикладному назначению гидромеханики, требующему воспроизведения всех существенных структур непосредственно, то есть в пространстве, занятом сплошной средой. Если учесть аргументы теоретических и экспериментальных данных в пользу

    существования такого представления , то воспроизведение аттракторов в контексте динамики пространственно-временных характеристик среды представляется настоятельной необходимостью.

    В данной работе строится аттрактор Лоренца в рамках предложенной в модели турбулентной динамики. Согласно этой модели, фазовыми пространствами турбулентных режимов являются расслоения струй пульсаций гидродинамических величин. Геометрия пульсационных расслоений предполагается априори произвольной, определяемой моделируемыми особенностями соответствующих хаотических режимов. Основным объектом моделирования является хаотическая структура, представляющая собой комплекс неустойчивых траекторий движения точек среды. Предполагается, что каждому установившемуся турбулентному режиму отвечает вполне определенная хаотическая структура. В траектории хаотической структуры отождествлялись с множеством интегральных кривых неинтегрируемого (неголономного) распределения типа Пфаффа, заданного на расслоении пульсаций динамических переменных.

    Характерной чертой предложенной модели является способ Лагранжа описания движения среды, не сводящийся, в общем случае, к описанию движения в переменных Эйлера. При этом оказалось, что описание Лагранжа замечательно приспособлено для отображения динамики систем со странными аттракторами. Вместо жестких ограничений парадигмы Эйлера описание Лагранжа накладывает гораздо более мягкие условия, служащие для определения геометрических объектов соответствующих неголономных распределений. Такое изменение акцента моделирования позволяет воспроизводить разнообразные аттракторы в динамике пучков частиц континуальных сред.

    1. Зададимся уравнениями динамики пульсаций трехмодового режима

    (уг + 4 (х,у!)(хк = Аг{х,у^)(И {1,3,к = 1,2,3), (1)

    где хк и уг образуют наборы пространственных и динамических координат расслоения пульсаций, а объекты шгк{х,у^)(хк и Аг{х,у^)М определяют собой характер межмодовых взаимодействий режима. Можно рассматривать эти объекты и само уравнение (1) как правила образования производных от динамических координат по пространственным координатам и времени, определяемых реальной турбулентной эволюцией. Инвариантный геометрический смысл этих объектов состоит в том, что в расслоении пульсаций они определяют объект внутренней связности и вертикальное векторное поле, соответственно.

    Предположим, что введенные выше динамические координаты имеют смысл пульсаций скорости течения среды, то есть актуальная скорость среды может быть разложена на поле скоростей среднего течения и пульсации по формуле

    иг{х,у)= и0 {х)+ уг. (2)

    Уравнения баланса массы и импульса примем в форме стандартного уравнения неразрывности и уравнения Навье - Стокса

    Чр + уДи. (4)

    Данная система уравнений еще не полна, так как в уравнение (4) входит давление, являющееся термодинамической переменной, динамика которой, в общем случае, выходит за рамки кинематики. Для описания пульсаций давления требуются новые динамические координаты, что увеличивает число необходимых степеней свободы для описания соответствующего турбулентного режима движения. Введем новую динамическую переменную, имеющую смысл пульсаций давления, то есть примем

    p(x,y)= po(x)+ y4. (5)

    Таким образом, первоначальный набор требуемых динамических координат для отображения движения сплошной среды является четырехмерным.

    Возможность редукции к трехмерной системе с динамикой, аналогичной динамике системы Лоренца, заключается в том, что в уравнение (4) давление входит в виде градиента. Отсюда следует, что редукция к трехмерной динамике пульсаций скоростей может быть выполнена, если входящий в уравнение (4) градиент давления будет содержать только первые три динамические координаты. Для этого достаточно потребовать, чтобы в уравнениях динамики для четвертой координаты

    dy4 + wj (x, y)dxk = A4 (x, y)dt (6)

    коэффициенты форм связности w4(x,yj)dxk зависели только лишь от первых трех динамических координат. Заметим, что трехмерный режим может оказаться неустойчивым с точки зрения более полного описания, включающего в себя рассмотрение всех возбуждаемых степеней свободы. Тем не менее, мы ограничимся моделированием именно этой априори возможной динамики.

    Рассмотрим условия, накладываемые уравнениями баланса (3), (4) на выражения неизвестных величин wk(x,yj)dxk и Ai(x,yj)dt, входящих в динамическое уравнение (1). Для этого подставим (2) и (5) в (3) и (4), и воспользуемся уравнениями (1) и (6). Для упрощения возникающих выражений будем считать пространственные координаты xk декартовыми. В этом случае можно не различать верхние и нижние индексы, поднимая и опуская их по мере необходимости записи ковариантных выражений. Тогда получим следующие уравнения для коэффициентов уравнения (1)

    dkuk - wj = 0, (7)

    Ai + (uk + yk)(djuk - wj) = -(dipo - w4i) - vDjwik. (8)

    где введено обозначение Dj = dj - wk^y.

    Для дальнейшего конкретизируем постановку задачи. Будем рассматривать режим, среднее поле скоростей которого описывает течение простого сдвига

    uk = Ax3à\. (9)

    Кроме того, сделаем предположения и в отношении геометрии расслоенного пространства пульсаций. Будем считать связность расслоения линейной функцией по динамическим координатам, то есть w^ = waj (x)yj (а = 1,..., 4). В этом случае из уравнения (8) сразу следует, что второй объект приобретает полиномиальную по динамическим координатам структуру. А именно, вертикальное векторное поле становится многочленом второго порядка по динамическим координатам, то есть

    Ai = Ak (x) + Aj (x)yk + j (x)yj yk.

    Таким образом, неизвестными функциями, определяющими уравнение динамики пульсаций рассматриваемого трехмодового режима, являются коэффициенты юак(х), Аг0{х), Агк{х) и А3к{х), для определения которых имеем уравнения (3) и (4). Заметим при этом, что уравнение (4) по существу сводится к определению коэффициентов вертикального векторного поля, тогда как выбор коэффициентов связности ограничивает только лишь уравнение неразрывности (3). Это уравнение оставляет значительный произвол в определении коэффициентов связности, оставляя тем самым широту моделирования пространственной структуры динамики пульсаций, согласованных с выбранным средним течением.

    2. Рассмотрим возможность получения в данной задаче аттрактора типа Лоренца. С этой целью, прежде всего, обсудим разложение актуальных значений скорости на среднюю скорость и пульсации около среднего.

    По смыслу пульсаций их временное среднее должно быть равным нулю, то есть

    (у)т - 0. (10)

    Вместе с тем, пульсации определяются как отклонения актуальных значений скорости от осредненного значения. Если среднее течение считать заданным, то отмеченное обстоятельство не позволяет выбирать в качестве модельного уравнения хаоса произвольную систему уравнений с хаотической динамикой. Для того чтобы переменные модельной системы уравнений можно было рассматривать как пульсации реальных гидромеханических величин, требуется выполнение условий (10). Если же (10) не выполняется, то это означает существование в динамике пульсаций неучтенного дрейфа. Соответственно, принятая модельная система оказывается несогласованной либо с учитываемыми действующими факторами, либо со структурой допускаемого среднего течения.

    Далее, уравнение (1) является в общем случае не вполне интегрируемой системой типа Пфаффа. Свойство неинтегрируемости этого уравнения является принципиально важным, отвечающим характерной для турбулентного движения особенности. А именно, в процессе движения любые макроскопически малые турбулентные образования, частицы, моли, глобулы, утрачивают свою индивидуальность. Эта особенность учитывается неинтегрируемостью уравнения (1). По существу, (1) описывает ансамбль возможных траекторий движения точек континуума, образованного сплошной средой. Эти траектории определены в расслоении пульсаций. Их проекции на пространство, занимаемое сплошной средой, определяют динамику развития пульсаций вдоль соответствующих пространственных кривых. Заметим, что последние могут быть выбраны произвольно, определяя собой возможность рассмотрения динамики пульсаций вдоль любой пространственной кривой.

    Рассмотрим для определенности динамику пульсаций вдоль линий тока среднего течения. Тогда имеем следующие динамические уравнения:

    хг = и0, (11)

    уг + ш)к у3 4 = Аг. (12)

    Прежде чем рассматривать эту систему, преобразуем ее к безразмерным переменным. Для этого в исходном уравнении (4) вместо коэффициента вязкости введем

    число Рейнольдса. Затем устраним явную зависимость от этого числа с помощью замены